Millihertz-linewidth laser could make the best clocks more precise

July 1, 2009
A theoretical proposal by scientists at JILA (which is jointly operated by the National Institute of Standards and Technology and the University of Colorado, both in Boulder, CO) for a millihertz-linewidth laser could one day help improve the stability of the best clocks by two orders of magnitude—which would improve applications such as GPS, synchronization of data networks, and tests of the fundamental laws of physics, among others.

A theoretical proposal by scientists at JILA (which is jointly operated by the National Institute of Standards and Technology and the University of Colorado, both in Boulder, CO) for a millihertz-linewidth laser could one day help improve the stability of the best clocks by two orders of magnitude—which would improve applications such as GPS, synchronization of data networks, and tests of the fundamental laws of physics, among others. The laser would emit light directly from an ultranarrow clock transition—avoiding thermal noise and producing a linewidth smaller even than the clock transition itself—by forcing an ensemble of atoms to emit energy collectively instead of individually.

To achieve this, ultracold alkaline-earth (such as strontium) atoms are placed in a high-Q cavity and confined by an external optical lattice so that they are all in phase with a specific cavity mode, creating a “macroscopic dipole.” So-called “repumping” lasers cool the atoms to the vibrational ground state and then pump them to provide inversion for the laser transition. While the resulting power would only by on the order of 10-12 W, this would be enough to phase-lock a slave optical local oscillator, enabling stabilization of next-generation clocks. Contact Dominic Meiser at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!