Modelocked femtosecond laser emits at 2420 nm

Nov. 1, 2009
A room-temperature, long-wavelength (2 to 3 µm) femtosecond laser would be useful for high-harmonic generation in the deep-UV or soft-x-ray regions, or as a pump source to create even-longer-wavelength IR femtosecond pulses via parametric or Raman conversion.

A room-temperature, long-wavelength (2 to 3 µm) femtosecond laser would be useful for high-harmonic generation in the deep-UV or soft-x-ray regions, or as a pump source to create even-longer-wavelength IR femtosecond pulses via parametric or Raman conversion. Researchers at Koç University and Teknofil (both in Istanbul, Turkey) have created such a laser, using chromium-doped zinc selenide (Cr2+:ZnSe) as a gain medium. The laser produces 95 fs pulses at a pulse-repetition rate of 94.3 MHz and an average power of 40 mW.

A 5 W thulium fiber laser operating at 1800 nm end-pumps the laser cavity, which contains a 2.4-mm-long Cr2+:ZnSe crystal. Two magnesium fluoride prisms were inserted in the cavity to create a Kerr-lens modelocking configuration with a cavity dispersion of -1700 fs2 at 2420 nm. The full-width half-maximum pulse width was 95.2 fs, assuming a sech2 pulse profile, while the wavelength spectrum had a width of 69 nm; the resulting time-bandwidth product of 0.335 was almost identical to what would be expected for a transform-limited sech2 pulse (0.315). The laser operated continuously and stably for up to 15 minutes; longer periods will be achieved with better optical mounts, say the researchers. Contact Alphan Sennaroglu at [email protected].

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!