Selective oxidation produces top- and bottom-emitting vertical-cavity lasers

May 1, 1997
A spatially selective oxidation technique produced arrays of vertical-cavity lasers (VCLs) consisting of surface-emitting devices interleaved with substrate-emitting ones. Researchers at the University of Southern California (USC; Los Angeles, CA) developed the arrays as part of their work on smart pixels for free-space optical systems. Vertical-cavity lasers are attractive for this application because two-dimensional arrays can be made relatively easily. For a smart pixel, the researchers want

Selective oxidation produces top- and bottom-emitting vertical-cavity lasers

A spatially selective oxidation technique produced arrays of vertical-cavity lasers (VCLs) consisting of surface-emitting devices interleaved with substrate-emitting ones. Researchers at the University of Southern California (USC; Los Angeles, CA) developed the arrays as part of their work on smart pixels for free-space optical systems. Vertical-cavity lasers are attractive for this application because two-dimensional arrays can be made relatively easily. For a smart pixel, the researchers want to incorporate lasers emitting in both the surface and substrate directions with field-effect transistors and detectors.

Aaron Bond and Daniel Dapkus grew VCLs with symmetric and novel distributed-Bragg-reflector stacks on the to¥and bottom of the cavity, then used spatially selective oxidation to change the reflectivities of either the to¥or bottom mirrors, thus creating either top- or bottom-emitting lasers. The researchers created a 9 ¥ 13 array with apertures of differing sizes--more than 95% of the devices lased with good characteristics. Both the top- and bottom-emitting lasers had current thresholds from 65 to 70 µA, slope efficiencies from 16% to 18%, output powers u¥to 0.4 mW, and far-field FWHM beams of 9° to 18°, depending on the aperture size. Peak slope efficiency for a device with an 80-µA threshold is 18%.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!