Composite polymeric:fullerene photovoltaic film enhances conversion efficiency

Feb. 1, 1996
Organic photovoltaic cells composed of buckminsterfullerene (C60) blended with poly(2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene), or MEH-PPV, show enhanced performance more than two orders of magnitude greater than MEH-PPV alone. Polymer-based photovoltaic cells could be economical to fabricate and easily tailored to specific applications. In the composite MEH-PPV:fullerene devices developed at the University of California, Santa Barbara, subpicosecond electron transfer from MEH-PPV (

Composite polymeric:fullerene photovoltaic film enhances conversion efficiency

Organic photovoltaic cells composed of buckminsterfullerene (C60) blended with poly(2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene), or MEH-PPV, show enhanced performance more than two orders of magnitude greater than MEH-PPV alone. Polymer-based photovoltaic cells could be economical to fabricate and easily tailored to specific applications. In the composite MEH-PPV:fullerene devices developed at the University of California, Santa Barbara, subpicosecond electron transfer from MEH-PPV (donor) to C60 (acceptor) increases the polymer photoconductivity. The structure forms a bicontinuous network of donors and acceptors, making it essentially a bulk heterojunction capable of high collection efficiency.

The group has fabricated several devices consisting of MEH-PPV:C60 composite layered on an indium tin oxide-coated glass or mylar substrate. A thin layer of aluminum or calcium provides the contact, and device sizes range from 1 cm2 to more than 15 cm2. Illumination intensities of 20 mW/cm2 at 430 nm resulted in energy conversion efficiencies of about 2.9%, more than two orders of magnitude higher than undoped MEH-PPV structures. Researchers expect these preliminary efficiency figures to double when device operation is optimized.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!