Semiconductor powder provides for Anderson localization of light

Feb. 1, 1998
Semiconductor powders with a high refractive index—about 3.48—have allowed researchers to experimentally demonstrate Anderson localization of light.

Semiconductor powders with a high refractive indexabout 3.48have allowed researchers at the European Laboratory for Non-Linear Spectroscopy (Florence, Italy) and the Van der Waals-Zeeman Laboratory (Amsterdam, The Netherlands) to experimentally demonstrate Anderson localization of light. The phenomenon is a disorder-induced phase transition, observed, for example, in the electron-transport behavior change from the classical regime where Ohm`s law prevails to a localized state in which the material behaves as an insulator. The origin of the effect is electron interference due to multiple elastic scattering from defects in the solid form of the material. The researchers used ultrapure ground gallium arsenide crystals, with mean free paths for scattering as low as 0.17 µm. With 1064-nm light, measurement of the transmission coefficient T showed a quadratic dependence on sample length L (T µ L-2), in contrast to a linear dependence for the classical regime. Further decrease of powder particle size changed the quadratic behavior into exponential decay, as expected in the localized regime, where the transport of light has come to a halt. The result may lead to applications in optical data processing, spectroscopy, and laser physics.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!