Scanned probe method boosts Raman sensitivity by factor of 4000

Nov. 1, 1998
Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO) have achieved spatial resolution on the order of 2 nm for Raman and fluorescence spectroscopy--this represents a 4000-fold sensitivity increase for near-field scanning optical microscopy (NSOM). While 1-nm resolution has been reported previously for interferometric spectroscopy, the NIST researchers say they are the first to achieve this type of resolution with nonresonant spectroscopy.

Scanned probe method boosts Raman sensitivity by factor of 4000

Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO) have achieved spatial resolution on the order of 2 nm for Raman and fluorescence spectroscopy--this represents a 4000-fold sensitivity increase for near-field scanning optical microscopy (NSOM). While 1-nm resolution has been reported previously for interferometric spectroscopy, the NIST researchers say they are the first to achieve this type of resolution with nonresonant spectroscopy.

To achieve the improved sensitivity, the traditional subwavelength-aperture-based NSOM technique was replaced with an apertureless method based on the scanning tip of an atomic force microscope (AFM). The sample, illuminated from below through a prism by a 543-nm laser, was scanned from above with the AFM probe. Evanescent-field interactions between the sample and the AFM probe were measured with a photomultiplier. A key difference from previous scanned-probe efforts was a "liftoff" correction, applied to eliminate the influence of probe scattering from the sample measurement. While the resolution of traditional NSOM techniques is limited by diffraction effects to about 20 nm, resolution of the scanned-probe technique could theoretically proceed down to the atomic level, limited only by the sharpness of the probe.

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!