Super-resolution Microscopy: Approach boosts accuracy of single-molecule tracking

Feb. 1, 2016
Tracking how molecules move, form shapes, and interact within neurons and other cells offers a powerful view of biological processes that impact health.
Subdiffraction perforations in an array function as regularly spaced fluorescent point emitters. Widefield epi-illumination (green) passes through the glass coverslip into a nanoscale opening etched into a layer of aluminum. An aqueous solution of fluorescent dyes fills the nanohole from the top, and the spatially restricted light emitted from dyes diffusing within the hole (orange) is detected from below.
Subdiffraction perforations in an array function as regularly spaced fluorescent point emitters. Widefield epi-illumination (green) passes through the glass coverslip into a nanoscale opening etched into a layer of aluminum. An aqueous solution of fluorescent dyes fills the nanohole from the top, and the spatially restricted light emitted from dyes diffusing within the hole (orange) is detected from below.

Tracking how molecules move, form shapes, and interact within neurons and other cells offers a powerful view of biological processes that impact health. Now, work at Stanford University (CA), led by Nobel Laureate W. E. Moerner, demonstrates a marked improvement in the accuracy of such tracking—and of super-resolution microscopy in general.1

A single point of light coming from a molecule can typically be located with ~10 nm precision. At such resolutions, any imperfection in an optical system introduces image distortions that can significantly skew measurements, particularly in 3D. The resulting errors could mean the difference between interpreting two molecules as interacting or simply residing nearby.

Such aberrations have not generally been recognized, says doctoral candidate Alex von Diezmann, but his team demonstrated their existence—and their ability to degrade images. Seeking a better calibration approach, von Diezmann created an array of holes in a metal film, each smaller than 200 nm and regularly spaced 2.5 μm apart. Once the holes were filled with fluorescent dyes, he was able to use the array to adjust for optical errors across the microscope's entire field of view (not just at a few select spots, as is possible using current methods).

Studying the new calibration technique with double-helix and astigmatic point spread functions, the researchers found aberrations resulting in 20% measurement errors in 3D, and corrected them. In addition, they have used the technique to reduce aberrations of 50–100 nm to just 25 nm.

The team notes that aberration correction will become increasingly important as optical microscopy techniques evolve, and says the new approach can be used with any super-resolution or localization microscopy requiring 3D precision.

1. A. von Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, Optica, 2, 11, 985–993 (2015); doi:10.1364/optica.2.000985.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!