Ion trap may eventually enable mass production of quantum computers

Aug. 1, 2006
Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO) have designed and built an electromagnetic trap for ions that could potentially be mass-produced to make quantum computers large enough for practical use.

Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO) have designed and built an electromagnetic trap for ions that could potentially be mass-produced to make quantum computers large enough for practical use. It is the first functional ion trap in which all electrodes are arranged in a single-layer “chiplike” geometry, which should be much easier to manufacture than previous ion traps with multiple electrode layers.

The structure, fabricated using standard photolithography and metal-deposition techniques, consists of a polished fused-quartz substrate, coated first with a titanium adhesion layer and then with a copper seed layer. Resistors and leads were patterned onto the structure using photolithography, and it was electroplated with gold electrodes. Ions were created in the completed trap by photoionizing thermally evaporated neutral magnesium atoms, and individual laser-cooled magnesium ions were confined in the linear Paul trap about 40 µm above the electrode plane. The NIST scientists reported a heating rate in the device of about 5 motional quanta per millisecond for a trap frequency of 2.83 MHz, sufficiently low to be useful for quantum information processing. Contact David Wineland at[email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!