Angle-scanning an etalon precisely measures its thickness variation

Feb. 1, 2006
Used in imaging solar spectroscopy, tunable Fabry-Perot interferometers made from lithium niobate wafers must have thickness variations of no more than 1 nm rms (root mean square) across their rather large working apertures (tens of millimeters in diameter).

Used in imaging solar spectroscopy, tunable Fabry-Perot interferometers made from lithium niobate wafers must have thickness variations of no more than 1 nm rms (root mean square) across their rather large working apertures (tens of millimeters in diameter). Measuring these small variations is difficult, but a group of researchers at CSIRO Industrial Physics (Lindfield, Australia) has come up with a simple approach that involves rotating the etalon in a collimated, frequency-stabilized He-Ne laser beam and measuring the transmission versus angle.

In a standard laboratory environment, a test etalon with a 37.5-mm clear aperture was rotated on a precise stage with a 0.00008° angular resolution and the transmitted light captured by a digital video camera. The angle of maximum etalon transmission was found for each camera pixel and the data used to determine optical etalon thickness (relative to other pixels) at that point; physical thickness was then easily derived. To check, measurements were taken at different angular wafer orientations and on different days. Measurement repeatability was 0.07 nm rms or better and reproducibility 0.16 nm rms or better; absolute thickness variations were on the order of 1.3 nm. Contact John Arkwright at [email protected].

Correction

In “Gallium nitride has low loss at 1550 nm” (Newsbreaks, December 2005, p. 11) we neglected to note that the work was a joint effort by Lucent Technologies’ Bell Labs and Samsung Advanced Institute of Technology.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!