MICROSCOPY: Plasmonic laser antenna sharpens nanovision

Oct. 1, 2006
In microscopy, diffraction limits spatial resolution to about half a wavelength, or several hundred nanometers with visible light.
In microscopy, diffraction limits spatial resolution to about half a wavelength, or several hundred nanometers with visible light. One way of overcoming this is to use an antenna, rather than a lens, to concentrate light to the subwavelength scale. A challenge that has arisen with such optical antennae is that surface plasmons (collective electron resonances caused by the penetration of radiation into metals) prevent a direct downscaling of traditional antenna designs and hence demand a careful study of surface modes in metal nanostructures or plasmonics (see www.laserfocusworld.com/articles/259934).

In August of this year, researchers at Harvard University (Cambridge, MA) reported research results that appear to address this conundrum directly. They successfully made use of plasmonic effects to integrate an optical antenna onto a laser diode. In doing so, they also concentrated the laser radiation down to dimensions that are an order of magnitude less than its wavelength.1

The Harvard surface-plasmon device consists of a dipole antenna in which two 130-nm-long and 50-nm-wide gold nanorods are separated by a 30 nm gap and integrated onto the facet of a commercial 830 nm laser diode (see Fig. 1). Laser excitation of surface plasmons in the gold nanorods generated enhanced and spatially confined optical near fields, and a spot size measuring 40 × 100 nm was obtained (see Fig. 2). Resonant dimensions for the optical-antenna gap and segments were obtained prior to fabrication by modeling optical-antenna structures using finite-difference time-domain software.

The Harvard team was from the Division of Engineering and Applied Sciences. It included Ertugrul Cubukcu and Eric Kort, graduate students in the Ken Crozier and Frederico Capasso research groups at Harvard. Their device appears to be the first integration of an optical antenna onto a laser, providing a platform that effectively combines plasmonics with near-field microscopy.

“The laser diode illuminates the antenna, exciting surface-charge oscillations or surface plasmons,” Crozier said. “This leads to an intense nanospot of light in the antenna gap.” The intensity of the spot is due to a capacitive effect between the gold nanorod facets that creates a huge electric field. In pulsed operation, the antenna can generate a peak intensity of more than a gigawatt per square centimeter.

The researchers believe that spot sizes of 20 nm should be possible and point out that the technology can be implemented in spectral regions ranging from the visible to the far-infrared, and can also be implemented using quantum-cascade lasers. Potential application areas include near-field optical microscopes, optical data storage, and heat-assisted magnetic recording.

REFERENCE

1. E. Cubukcu et al., Applied Physics Lett. 89, 093120-1 (2006).

About the Author

Hassaun A. Jones-Bey | Senior Editor and Freelance Writer

Hassaun A. Jones-Bey was a senior editor and then freelance writer for Laser Focus World.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!