Atom’s recoil is sometimes less than photon’s momentum

Oct. 1, 2006
Kurt Gibble, an associate professor of physics at Pennsylvania State University (University Park, PA), has uncovered a surprising characteristic of atoms absorbing photons in a laser beam; if the beam is focused, an atom near the center of the beam recoils less from absorbing a photon than if the light were an infinite plane wave.

Kurt Gibble, an associate professor of physics at Pennsylvania State University (University Park, PA), has uncovered a surprising characteristic of atoms absorbing photons in a laser beam; if the beam is focused, an atom near the center of the beam recoils less from absorbing a photon than if the light were an infinite plane wave. This means that the photon actually imparts less momentum (ħkz) to the atom for a wavefront finite in size.

According to Gibble’s calculations, which are based on the Schrödinger equation, the transverse spatial gradient (in the atom cloud) of the dipole energy produces a force that “lenses” the atomic wave function, affecting its phases, but not its average position or width. Thinking of the angular spectrum of the wavefront as a sum of plane waves, Gibble explains that the atom feels the effect of the photons from all of the beams simultaneously. “Surprisingly, it recoils with a speed that is less than it would get from the momentum of any one of the infinitely wide photons,” he says. Gibble’s discovery has implications for the accuracy of atomic clocks, which are based on microwaves. Contact Kurt Gibble at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!