Excimer-laser light locks tritium into silica for micropower

June 1, 2006
In the interests of creating on-chip radioisotope micropower sources, researchers at the University of Pittsburgh (Pittsburgh, PA), the University of Toronto, and Kinectrics (both of Toronto, Ont., Canada) have locked tritium, the gaseous radioactive isotope of hydrogen, into silica glass using 248 nm light from a krypton fluoride excimer laser.

In the interests of creating on-chip radioisotope micropower sources, researchers at the University of Pittsburgh (Pittsburgh, PA), the University of Toronto, and Kinectrics (both of Toronto, Ont., Canada) have locked tritium, the gaseous radioactive isotope of hydrogen, into silica glass using 248 nm light from a krypton fluoride excimer laser. While tritium can be loaded into fused silica without the help of laser light, the excimer radiation keeps the gas from diffusing away.

A silica film on a silicon substrate was loaded by exposing it to tritium at a pressure of 12.4 megapascal and 250°C for anywhere from two hours to seven days. Excimer-laser light at a fluence of 4800 J/cm2 bonded 60% of the permeated tritium to the glass, versus 10% for non-laser-irradiated samples. The locked tritium remained in the glass even at temperatures up to 400°C. A tritium-loaded film on a chip would produce energetic electrons that could charge up a capacitor for power, or excite or ionize molecules. The researchers created a 0.5 cm2 tritium-loaded film, placed it between two electrodes, and measured a nanoampere-level ionization current. Contact Baojun Liu at [email protected].

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!