Mentor LightSuite software speeds integrated photonic design development

Oct. 2, 2018
This new software tool enables companies designing integrated photonic layouts to complete designs in days, not weeks.

Mentor (Wilsonville, OR), a Siemens business, launched LightSuite [trademarked] Photonic Compiler--an integrated photonic automated layout system. This new software tool enables companies designing integrated photonic layouts to describe designs in the Python language, from which the tool then automatically generates designs ready for fabrication. The resulting design is "Correct by Calibre"--with the implementation precisely guided by Mentor's Calibre [trademarked] RealTime Custom verification tool. LightSuite Photonic Compiler enables designers to generate as well as update large photonic layouts in minutes versus weeks.

With this technology, Mentor says that companies can dramatically speed the development of integrated photonic designs that will bring speed-of-light communications directly into high-speed networking and high-performance computing (HPC) systems. It also speeds the development of more cost-effective light detection and ranging (lidar) technology, which is seen as essential to enabling the mass deployment of autonomous vehicles.

"Mentor's LightSuite Photonic Compiler represents a quantum leap in automating what has up to now been a highly manual, full-custom process that required deep knowledge of photonics as well as electronics," said Joe Sawicki, VP and GM of the Design-to-Silicon Division at Mentor, a Siemens business. "With the new LightSuite Photonic Compiler, Mentor is enabling more companies to push the envelope in creating integrated photonic designs."

"LightSuite Photonic Compiler fixes the biggest roadblocks preventing industry-wide adoption of electro-optical design and simulation of photonic chips," said M. Ashkan Seyedi, senior research scientist, Hewlett Packard Enterprise. "Photonic chips promise amazing performance, but designing circuits today is just too difficult and requires specialized knowledge. LightSuite Photonic Compiler circumvents those challenges and enables scalability. I'm thrilled to have worked with Mentor to develop this tool to make it possible for anyone to design and build photonic circuits as easily as designing electronic circuits."

Until now, photonic designers have been forced to use analog, full-custom IC tools to create photonic designs. In this flow, designers manually place components from a process design kit (PDK) and then interconnect those components manually. Photonic components must be interconnected with curved waveguides. After they have manually placed and interconnected the components, they typically perform a full Calibre physical verification run to check for design rule violations, as Calibre DRC can find violations even in photonic designs.

Mentor designed the new LightSuite Photonic Compiler specifically for photonic layout so that engineers have complete control of their layouts and can use the tool to automatically perform the placement and interconnecting of both photonic and electrical components. The designers create a Python script that is used to drive the LightSuite Photonic Compiler. Initial placement can also be defined in Python or come from a pre-placed OpenAccess design. Next, the tool interconnects photonics components with curved wave guides. As some of the components might contain built-in electrical elements, the tool will route these electrical connections simultaneously along with the curved waveguides.

LightSuite Photonic Compiler uses Calibre RealTime Custom during the inner placement and routing loop, resulting in a layout that is design-rule correct. The tool enables designers to perform "what-if" design exploration for photonics designs, which was prohibitively time consuming with manual layout. With this new level of automation, designers can generate a new layout in minutes versus weeks for large designs.

SOURCE: Mentor; https://www.mentor.com/company/news/siemens-mentor-new-lightsuite-photonic-compiler-automated-layout-tool-speeds-integrated-photonic-design-development

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!