MathWorks and FLIR partner to speed thermal imaging FPGA development

Aug. 22, 2012
Natick, MA--MathWorks announced that FLIR used MathWorks' MATLAB and HDL Coder software to reduce thermal imaging FPGA development time by 60%.

Natick, MA--MathWorks, a developer of mathematical computing software including MATLAB (a programming environment for algorithm development, data analysis, visualization, and numeric computation) and Simulink (a graphical environment for simulation and Model-Based Design for multidomain dynamic and embedded systems), announced that FLIR Systems (Wilsonville, OR) used MATLAB and HDL (Hardware Description Language) Coder to reduce thermal imaging field-programmable gate array (FPGA) development time from concept to field-testable prototype by 60%. By using MATLAB to design, simulate, and evaluate algorithms, and HDL Coder to rapidly implement the best algorithms on FPGAs, FLIR was able to speed development, complete enhancements in hours instead of weeks, and reuse code for prototyping and production.

MATLAB and HDL Coder lets FLIR's algorithm engineers produce FPGA prototypes themselves instead of handing written specifications to hardware engineers, who may not have full knowledge of the algorithm. This new thermal imaging algorithm development workflow also eliminates the error-prone step of translating algorithms to HDL by hand, adding time for developers to try more design iterations. As a result, FLIR algorithm engineers are able to explore a variety of design variations, gain confidence in the final prototype, and reuse code for production.

"With MATLAB and HDL Coder we are much more responsive to marketplace needs. We now embrace change, because we can take a new idea to a real-time-capable hardware prototype in just a few weeks. There is more joy in engineering, so we've increased job satisfaction as well as customer satisfaction," said Nicholas Hogasten, image processing technology manager, FLIR Systems.

Founded in 1984, MathWorks employs more than 2400 people in 15 countries.

SOURCE: MathWorks; www.mathworks.com/company/newsroom/FLIR-Speeds-Thermal-Imaging-FPGA-Development-Through-Automatic-HDL-Generation-From-MATLAB.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!