NEC's "Earth Simulator" first to predict laser-induced photochemical reactions

Jan. 6, 2011
Tokyo, Japan--NEC succeeded in the world's first prediction of laser-induced photochemical reactions, paving the way for the quantity synthesis of materials such as hydrogen.

Tokyo, Japan--NEC Corporation (NEC; TSE: 6701) announced that it succeeded in the world's first simulation-based prediction of laser-induced photochemical reactions that can efficiently eject a hydrogen atom from a hydrogen chloride molecule trapped inside a carbon nanotube. The simulation was conducted on the "Earth Simulator," which NEC deployed for the Japan Agency for Marine-Earth Science and Technology (President: Yasuhiro Kato; JAMSTEC), an independent administrative organization. These results are expected to pave the way for the quantity synthesis of not only hydrogen, but also inexpensive materials through the facilitation of known photochemical reactions due to laser pulse irradiation, as well as the development of new materials.

Results were published online on December 7 by Physical Review Letters.

The Earth Simulator topped the HPC Challenge Award for Fast Fourier Transform (FFT) performance at the SC10 supercomputing conference held in the United States in November 2010. The Earth Simulator demonstrated the world's top-level computing efficiency, especially for complicated applications, including nanoscience, quest for new materials, and weather prediction.

The FFT dominates almost half of the processing in the application software used for this research. The Earth Simulator significantly reduced the computing time needed for laser pulse irradiation; taking just two days in contrast to the several months required by conventional supercomputers. As a result, it is now possible to determine the optimum laser intensity in a realistic timeframe with a series of simulations for variable laser intensities.

The application fields of the Earth Simulator, with its outstanding sustained performance, span a wide range of areas. For example, it contributes to more accurate climate change projections and the comprehensive understanding of environmental issues, such as the assessment of the effects of global warming for the fifth report of the Intergovernmental Panel on Climate Change (IPCC), as well as prevention and mitigation of natural disasters through high-resolution simulations of earthquakes and seismic surges.

SOURCE: NEC; www.nec.co.jp/press/en/1012/2701.html

Posted by:Gail Overton

Subscribe now to Laser Focus World magazine; It’s free!

Follow us on Twitter

Follow OptoIQ on your iPhone. Download the free App here

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!