Fermat paths encode shape of NLOS hidden objects

Sept. 1, 2019
By using Fermat’s principle, which states that light takes the path it can traverse in the shortest time, the physical shape of a non-line-of-sight (NLOS) object can be reconstructed with more detail than transient methods.

Non-line-of-sight (NLOS) imaging has been demonstrated using various computational algorithms at different operational wavelengths. Typically, high-power pulsed light sources and ultrasensitive detectors are used to distinguish strong photons reflected by a visible object from the weak-intensity photons reflected from the hidden portions of the object. Unfortunately, these transient techniques look at photon intensity and transit time only, missing important information used to reconstruct a 3D volume of the hidden object. By using Fermat’s (least-time) optics principle, which states that the path taken by a light ray is the path that can be traversed in the shortest time, researchers at Carnegie Mellon University (CMU; Pittsburgh, PA) and the University of Toronto in Canada have improved NLOS object shape reconstruction using a geometric rather than time/intensity algorithm.

For a hidden object located around the corner from a source/sensor (or obscured by a diffuser), a Fermat flow algorithm is defined wherein the spatial derivative of the Fermat light path is used to determine the depth and normal of a hidden point in the scene. Through numerical fitting and mesh smoothing of depth and normal information for multiple points, the actual surface of the NLOS object is reconstructed. Using a 532 nm, 1 mW pulsed (80 MHz) laser and single-photon avalanche diode (SPAD) detector as well as a time-correlated single-photon counter (TCSPC), the method can reconstruct micrometer- through centimeter-scale objects with a variety of shapes and surface reflectance parameters with an approximate physical difference error of only 2 mm (by comparing reconstructions with CAD meshes when printing some 3D test shapes). By exploiting Fermat’s principle, the researchers are getting close to reconstructing NLOS hidden objects with nearly the same accuracy as objects directly visible to the camera. Reference: S. Xin et al., “A Theory of Fermat Paths for Non-Line-of-Sight Shape Reconstruction,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA (Jun. 2019).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!