CIP releases dual-channel all-optical 2R regenerator

Jan. 19, 2006
January 19, 2006, Ipswich, United Kingdom-- The Centre for Integrated Photonics (CIP) has released a dual-channel version of its all-optical 2R (reamplification and reshaping) regenerator for 40-Gbit/sec optical networking applications.

January 19, 2006, Ipswich, United Kingdom-- The Centre for Integrated Photonics (CIP) has released a dual-channel version of its all-optical 2R (reamplification and reshaping) regenerator for 40-Gbit/sec optical networking applications.

40G-2R2-ORP employs a combination of planar silica and indium phosphide (InP) component technologies to achieve optimal reamplification and reshaping quality. The two components used are a planar single-mode waveguide with splitter/combiner elements configured to create a balanced MZI, and a monolithically integrated array of four non-linear SOAs. The hybrid approach, using the best component technologies for each function, ensures extremely low intra-device excess losses and high optical gain. Special interface characteristics on both components, combined with a unique precision alignment technique, additionally allow the devices to be assembled without active alignment. This makes the finished component highly amenable to economic volume production. The packaged device measures just 6.5 x 3 x 1.4 cm (~2.6 x 1.2 x 0.55 inch).

Signals are regenerated by using non-linear cross-phase modulation in the SOAs. Two data inputs, one a time-delayed version with respect to the other, are used as switching signals for the SOAs. The temporal offset creates a gating window that switches the digital data onto a second optical input. The non-linear MZI's response, coupled with the operating characteristics of the SOAs, provides excellent control over the amplifier output pulse shape. Simple MZI phase bias is provided by thermo-optic phase shifters.

The same device can be configured for 2R regeneration (which can be applied with or without wavelength conversion) for bit-level optical switching and logic, and for 3R regeneration with the addition of an optical clock source.

Reamplification and reshaping combined with the option of wavelength conversion provides great flexibility of architecture for network operators, especially at switching nodes and interfaces between networks. The new device is also expected to be attractive for long-haul link applications, as in many instances all-optical 2R regeneration (especially with the benefit of multi-channel capability) provides an economic alternative to OEO (optical-electronic-optical) 3R nodes (or even a combination of OEO and EDFAs). Another potential mode of operation for the device is to use the twin channels in cascade, to clean pulse zeros and ones sequentially, providing optimum signal quality to support longer span lengths.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!