Thin twisted-nematic device achieves achromatic polarization rotation

Aug. 21, 2000
Researchers at Pennsylvania State University (University Park, PA) have theoretically and experimentally demonstrated a simple device for achromatic polarization rotation based on the eigenmode of a twisted-nematic (TN) structure.

Researchers at Pennsylvania State University (University Park, PA) have theoretically and experimentally demonstrated a simple device for achromatic polarization rotation based on the eigenmode of a twisted-nematic (TN) structure. The experimental device consisted of a thin (1.9-µm) TN liquid-crystal (LC) cell placed between two homogeneous LC waveplates. The TN cell had a specific twisted angle and was oriented parallel to a specific linear polarization angle of incident radiation. The homogeneous LC cells were oriented such that the entrant and emergent polarizers were parallel to the entrant and emergent directors of the TN cell. The purpose of the homogeneous LC cells was to transform the polarization state of all wavelengths between the linear polarization state and their corresponding eigenmodes. The theoretical explanation of the device was based on a Poincaré-sphere model representing the state of polarization as a curve on the PS. By combining the homogenous LC cell with the TN cells, the researchers achieved an emergent polarization rotation of 90° compared to incident polarization with almost 100% transmission over a wavelength range of 450 to 700 nm. Contact Zhizhong Zhuang at [email protected].

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!