Laser-oscillator pulses ionize helium

July 1, 2006
Researchers at the Max Planck Institute (Heidelberg, Germany) and the University of Hannover (Hannover, Germany) have used a Ti:sapphire oscillator with an extended cavity to generate 50 fs, 0.5 J pulses at a 6 MHz repetition rate to ionize helium.

Researchers at the Max Planck Institute (Heidelberg, Germany) and the University of Hannover (Hannover, Germany) have used a Ti:sapphire oscillator with an extended cavity to generate 50 fs, 0.5 J pulses at a 6 MHz repetition rate to ionize helium. The standard z configuration of the Ti:sapphire oscillator was extended by a multiple-pass Herriott cell in which the laser mode was reflected back and forth in a circular pattern between two concave mirrors, effecting a unity transformation, which made laser alignment and modelocking much easier. The oscillator was pumped by a continuous wave, 15 W, frequency-doubled Yb:YAG laser.

With 30% output coupling, stable modelocking at net positive intracavity dispersion was achieved, delivering 3.5 W of average power. Temporal compression and focusing of the laser pulses close to the diffraction limit was employed to achieve intensities exceeding 1014 W/cm2. As a consequence, the ionization of helium, a nonlinear process in which at least 17 photons must be absorbed simultaneously, could be demonstrated. A surprisingly high ionization rate of 1 kHz was achieved, leading the researchers to believe that the laser configuration will open a new window for investigations of multiphoton laser-atom and laser-molecule interactions at “low” intensities (1011 to 1012 W/cm2). Contact Sebastian Dewald at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!