New Bragg diffraction grating has very wide angular bandwidth

High efficiency at steep deflection angles makes the grating useful for AR displays.
May 10, 2018
2 min read

transmission diffraction grating invented by North Carolina State University (NC State; Raleigh, NC) researchers has an experimentally verified angular acceptance angle of 40°, which is twice that of previous state-of-the-art diffraction gratings configured to steer visible light to large angles.1 The new grating holds promise for creating more immersive augmented-reality (AR) display systems.

The new grating, with a 400 nm period and tested at a 532 nm wavelength, is also significantly more efficient than previous designs. "In previous gratings in a comparable configuration, an average of 30% of the light input is being diffracted in the desired direction," says Xiao Xiang, a Ph.D. student at NC State and lead author of the paper. "Our new grating diffracts about 75% of the light in the desired direction."

The new grating achieves the advance in angular bandwidth by integrating two layers, which are superimposed in a way that allows their optical responses to work together. One layer contains molecules that are arranged at a slant that allows it to capture 20° of angular bandwidth. The second layer is arranged at a different slant, which captures an adjacent 20° of angular bandwidth.

The higher efficiency stems from a smoothly varying pattern in the orientation of the liquid-crystal molecules in the grating. The pattern affects the phase and thus the redirection of the light.

The next step for this work is to take the advantages of these gratings and make a new generation of augmented-reality hardware," says Michael Escuti, a professor of electrical and computer engineering at NC State and one of the researchers. Escuti is also the chief science officer of ImagineOptix (Cary, NC), which funded the work and has licensed the technology.

Source: https://news.ncsu.edu/2018/05/tech-bends-light-2018/

REFERENCE:

  1. Xiao Xiang et al., Scientific Reports (2018); doi: 10.1038/s41598-018-25535-0

About the Author

John Wallace

Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sign up for Laser Focus World Newsletters
Get the latest news and updates.

Voice Your Opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!