Metasurface camera lens to link between quantum computers and fiber-optic networks

Sept. 13, 2018
Fabricated via CMOS-compatible processes, the lens allows reconstruction of one- and two-photon states.

An international team led by researchers at Australian National University (ANU; Canberra, Australia) has invented a small camera lens based on optical metasurfaces, aimed at facilitating links between quantum computers and fiber-optic networks.1 Quantum computers promise a new era in ultrasecure networks, artificial intelligence, and therapeutic drugs, and will be able to solve certain problems much faster than today's classical computers.

The lens is made of a silicon film with millions of resonant nanostructures that in sum form a metasurface less than a micrometer thick. The metasurface camera lens is highly transparent, thereby enabling efficient transmission and detection of information encoded in quantum light, says ANU associate professor Andrey Sukhorukov.

Reconstruction of photon states

The lens was used to image multiple projections of polarization-encoded quantum states, including their amplitude, phase, coherence, and entanglement. Polarization-insensitive click detectors placed after the metasurface allowed reconstruction of one- and two-photon states; future experiments could reconstruct higher photon numbers.

Kai Wang, a PhD scholar at the Nonlinear Physics Centre who worked on all aspects of the project, said one challenge was making portable quantum technologies. "Our device offers a compact, integrated, and stable solution for manipulating quantum light," says Kai. "It is fabricated with a similar kind of manufacturing technique used by Intel and NVIDIA for computer chips." (In other words, the fabrication process is CMOS-compatible.)

The research was conducted at the Nonlinear Physics Centre laboratories, where staff and postgraduate scholars developed and trialled the metasurface camera lens in collaboration with researchers at the Oak Ridge National Laboratory in the United States and the National Central University in Taiwan.

Source: http://www.anu.edu.au/news/all-news/tiny-camera-lens-may-help-link-quantum-computers-to-network

REFERENCE:

1. Kai Wang et al., Science (2018); doi: 10.1126/science.aat8196.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!