Bridger Photonics selects Boston Micromachines to help assess deformable mirror technology

Jan. 3, 2011
Cambridge, MA--Boston Micromachines Corporation (BMC) signed a consulting agreement with Bridger Photonics to quantitatively assess a new MEMS membrane deformable mirror design.

Cambridge, MA--Boston Micromachines Corporation (BMC), a provider of microelectromechanical systems (MEMS)-based deformable mirror (DM) products for adaptive optics systems, signed a consulting agreement with Bridger Photonics (Bozeman, MT) to quantitatively assess a new MEMS membrane deformable mirror design using Boston Micromachines' facilities.

"We recognized that Boston Micromachines is a world leader in deformable MEMS membranes. The two companies' technologies complement one another very well, so the fit is natural," said Peter Roos, president and CEO at Bridger Photonics. "We are excited to capitalize on BMC's proven expertise and knowledge in the field of deformable mirrors."

Bridger Photonics was awarded a Small Business Technology Transfer (STTR) grant from the National Science Foundation to develop a commercial prototype of an aberration compensated focus control device. This device, based on MEMS technology, will allow the user to deflect a deformable membrane mirror in a controlled manner in order to select a desired focal length. The device also features active control of low-order aberrations. This technology will enable the next generation of biomedical imaging devices for microscopy applications by enabling focus control and aberration correction in a simple, compact and low-cost sensor.

"Progress in deformable mirror technology has inspired innovative researchers to make advances in fields such as astronomy, microscopy, retinal imaging, and laser communication," said Paul Bierden, president and CEO at Boston Micromachines. "We are pleased to provide our extensive DM technology knowledge to Bridger Photonics to support its effort to expand the role of MEMS DM technology in wavefront correction for scientific advancement."

SOURCE: Boston Micromachines; www.bostonmicromachines.com/news_press_bridger.htm

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!