• Photonic crystal achieves full bandgap in near-infrared

    Scientists at Kyoto University (Kyoto, Japan) and the Ministry of International Trade and Industry (Ibaraki, Japan) have lithographically constructed a photonic crystal that has a full photonic bandgap at a 1.2-?m wavelength and is made from either gallium arsenide or indium phosphide, both semiconductors amenable to integration with light-emitting devices.
    Aug. 14, 2000

    Scientists at Kyoto University (Kyoto, Japan) and the Ministry of International Trade and Industry (Ibaraki, Japan) have lithographically constructed a photonic crystal that has a full photonic bandgap at a 1.2-µm wavelength and is made from either gallium arsenide or indium phosphide, both semiconductors amenable to integration with light-emitting devices. The bandgap effect reaches more than 40 dB, or a reflection of 99.99%. If full bandgap is defined as more than 80% attenuation, then the bandgap covers the 1.3- to 1.55-µm telecommunications region.

    The crystal is made in a "woodpile" configuration, in which layers of stripes are stacked in orthogonal directions. Every layer is shifted from its counterpart two layers below by half a period. The structure is assembled by bringing two wafers together in a wafer-fusion process, then removing one substrate; the process is repeated for up to eight layers. A stripe period of 0.7 µm necessitates a 30-nm alignment tolerance between layers to prevent a loss of the full bandgap. The researchers introduced a defect consisting of two removed orthogonal stripes, creating a waveguide with a 90° bend with a predicted transmission of greater than 95%. Contact Susumu Noda at [email protected].

    Sign up for Laser Focus World Newsletters
    Get the latest news and updates.

    Voice Your Opinion!

    To join the conversation, and become an exclusive member of Laser Focus World, create an account today!