New optics bonding technique is space-qualified

June 22, 2016
Hydrophilic bonding is used for grating/prism in ESA satellite spectrometer.
A directly bonded fused-silica grism (prism + grating) has its grating at the inner (joined) surface. (Photo copyright Fraunhofer IAO)


Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF (Jena, Germany) have developed an optics bonding technique that defies the inhospitable conditions in space and does not affect measurements of the satellite spectrometer it is being used for. The researchers are working together with the German Aerospace Center (DLR) and the European Space Agency (ESA); the bonding technique was used to assemble a grism (grating plus prism) for use in spectroscopic detection of methane and nitrous oxide from space. (Conventional optical adhesive was not an option, as it absorbs light, thereby distorting the measurement result, is sensitive to radiation, and ages too fast.)

"We combine the optical elements with each other at the atomic scale, namely via oxygen bridges," says Gerhard Kalkowski, a scientist at the IOF. "In this way, we will provide the key for high-resolution systems made of prism-grating structures to also be able to be used in space in the future."

The technology, which is already used for silicon wafers, is called hydrophilic bonding. In this process, oxygen and hydrogen atoms are bonded to the wafer's surface. By pressing the surfaces together at elevated temperatures in a vacuum, rigid (covalent) oxygen bonds form between the two parts. The researchers have now successfully transferred this technology to transparent silica glass. The advantages: the oxygen bridges firmly connect the grating and prisms together, and the radiation in space cannot damage them. In addition, there is no intermediate layer, as in the case of adhesive, which would distort the measurements of the spectrometer.

Among other things, the challenge was to accurately position the grating and prisms in relation to each other. The scientists thereby produce a mechanical edge on the grating which precisely corresponds to the grating history. "The orientations deviate by only about an arc minute, as required," Kalkowski says.

Initial prototypes successfully passed tests done by the ESA. The researchers presented their technology at the Berlin Air Show ILA (June 1 to 4, 2016; Berlin, Germany). In a further step, the scientists are working on complex prism-grating structures.

Source: https://www.fraunhofer.de/en/press/research-news/2016/May/measure-greenhouse-gases-from-space.html

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!