Tracking & Analysis of the Flight of a Projectile

May 29, 2002
Tring, UK, May 24, 2002 -- The DRS Hadland Flight Follower is a system for optically tracking and recording images of projectiles in flight using a high-speed camera over a distance of between 50 and 200 meters. Developed to record conventional projectiles that conform to normal ballistic trajectories, DRS Hadland has improved the Flight Follower system such that it is now possible to program the system to accurately track events that do not conform to conventional ballistic flight

Tring, UK, May 24, 2002 -- The DRS Hadland Flight Follower is a system for optically tracking and recording images of projectiles in flight using a high-speed camera over a distance of between 50 and 200 meters. Developed to record conventional projectiles that conform to normal ballistic trajectories, DRS Hadland has improved the Flight Follower system such that it is now possible to program the system to accurately track events that do not conform to conventional ballistic flight.

Projectiles that do not conform to conventional ballistic flight include rockets, rocket assisted missiles, rocket sledges and the latest generation of smart weaponry.

The new system is based upon a programmable scanning mirror positioned in front of a high-speed video camera. The acceleration profile of the object to be tracked can now be entered into the new 'rocket software' which converts the information into the correct scan profile for the mirror to follow the object taking into account the geometry of the set-up which may now be non-symmetric. This increased operational versatility means that the Flight Follower is uniquely able to optically track and analyze the performance of almost any projectile irrespective of the flight trajectory it may follow.

Providing continuous, high resolution scanning across a 90 degree tracking angle the system records the whole flight of the projectile rather than capturing its status at a series of individual points. In this way visualization of projectile integrity and flight attitude (spin, pitch and yaw) may be measured continuously greatly enhancing the speed and quality of flight analysis. With the mirror optical scan covering a 90 degree arc the high speed video camera within the system is able to `see` the projectile over a trajectory length equal to twice the stand-off distance between the camera station and the line of flight of the projectile.

For more information, visit www.drshadland.co.uk.

Laser Focus World

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!