Solid-immersion metalenses boost performance of IR focal-plane arrays

Oct. 1, 2018
Metasurface lens arrays formed on solid substrates that contact focal-plane arrays focus light onto each pixel to increase sensitivity and allow raising the operating temperature.

Microlens arrays placed not far from the image plane of infrared focal-plane arrays (IR FPAs) can, by focusing light onto each pixel, reduce the size of the active area of each pixel, which can increase the sensitivity of the FPA and allow it to run at a higher temperature. Now, researchers at Harvard University (Cambridge, MA) and the Jet Propulsion Laboratory (JPL) at the California Institute of Technology (Pasadena, CA) are designing solid-immersion metasurface lenses to accomplish the same purpose. In these solid-immersion metalenses, the transmissive metasurface is atop a solid substrate that totally fills the gap between the metasurface lens and the FPA itself. As a result, the assembly is straightforward to put together and forms a rugged unit. The configuration is compatible with the architecture of back-illuminated FPAs.

The experimental 10 × 10 metalens array focuses light at a 3–5 µm wavelength through a gallium antimonide (GaSb) substrate. However, the technique is applicable to other mid-IR optical materials as well. Each metasurface-lens array element is 30 µm in diameter and is composed of many round posts created by etching the GaSb, with the diameter of the posts decreasing as a function of lens radius. Two types of metalenses were created: amonochromatic and a broadband version. For testing, a microscope situated to focus on the other side of the substrate (where the FPA would be placed) imaged the focused spots and compared them to unfocused light, showing that the monochromatic metalenses produced foci with a beam waist of 13.9 µm at 1/e2 of the peak intensity at a 3.9 µm wavelength, while the broadband version produced foci with a 16.4 µm size over a 3–5 µm wavelength. Strehl ratios for the monochromatic and broadband lenses were 52 and 0.38, respectively. (The researchers note that for this type of use, diffraction-limited performance is not required.) Both types of metalens showed an intensity enhancement of about 3X at the focus. Reference: S. Zhang et al., Appl. Phys. Lett. (2018); https://doi.org/10.1063/1.5040395.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!