Multipass pumping scheme produces 13 W in Nd:YLF

Aug. 1, 1995
A high-power diode-pumped, neodymium-doped yttrium lithium fluoride (Nd:YLF) laser has been demonstrated by engineers at Schwartz Electro-Optics Research Division (SEO, Concord, MA).

A high-power diode-pumped, neodymium-doped yttrium lithium fluoride (Nd:YLF) laser has been demonstrated by engineers at Schwartz Electro-Optics Research Division (SEO, Concord, MA). The system operates at 1047 nm in continuous-wave or pulsed mode. Reported results include 13 W of output with 33% optical efficiency and a beam quality M2 of less than 1.2.

Segmented endface coatings are used to force multiple passes through the bar-shaped gain region, in contrast to the zig-zag gain path of conventional total-internal-reflection slab lasers. A high-reflection coating covers the majority of each endface, while the remaining area is an anti-reflection-coated coupling window. The 3-cm-long Nd:YLF bar is side-pumped at 808 nm by a pair of 20-W diode-laser arrays. The arrays are laterally offset and the crystal sideface coatings segmented such that pump power is reflected from the crystal face opposite each diode bar, resulting in double-pass pump absorption.

The three-mirror cavity configuration consists of a cylindrical mirror, a spherical mirror, and a flat output coupler. This arrangement produces a diffraction-limited beam at 1047 nm while minimizing thermal lensing in the Nd:YLF crystal. To remove excess heat, the crystal is mounted on a brass water-cooled heat sink. The laser can be Q-switched by an intracavity acousto-optic modulator at repetition rates ranging from 5 to 120 kHz.

Researcher James Harrison described achieving better than 13 W of output power with the laser in a postdeadline paper at CLEO '95 (CPD20). He also summarized results of second-harmonic generation experiments in which 6.8 W of 523.5-nm output was produced with a noncritically phase-matched lithium borate crystal.

There is widespread interest in the development of diode-pumped 1-µm lasers for many applications. Among the possibilities suggested by Harrison is a dry-ink printing process in which the laser fires on ink-impregnated plastic to release the pigment onto the paper. Such a process eliminates messy and volatile inks. A commercial Nd:YLF system rated at more than 10-W output was introduced by SEO at InterOpto (July 11-14, Chiba, Japan).

About the Author

Kristin Lewotsky | Associate Editor (1994-1997)

Kristin Lewotsky was an associate editor for Laser Focus World from December 1994 through November 1997.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!