Metamaterial enables darker-than-black radiation absorption

Aug. 1, 2010
Non-diffraction-limited hyperbolic metamaterials are not only finding applications as hyperlenses and photonic funnels but can also be used as highly efficient radiation absorbers, with nearly all incident light "sucked" into the metamaterial medium.

Non-diffraction-limited hyperbolic metamaterials are not only finding applications as hyperlenses and photonic funnels but can also be used as highly efficient radiation absorbers, with nearly all incident light "sucked" into the metamaterial medium. The material was predicted by Purdue University (West Lafayette, IN) researcher Evgenii Narimanov and demonstrated by researchers at Norfolk State University (Norfolk, VA). Because a uniaxial dielectric metamaterial can be designed such that one of the components of the dielectric permittivity tensors is negative, that metamaterial can have an infinite value of the density of states for every frequency where different components of the dielectric permittivity have opposite signs. This infinite density of states dramatically suppresses light scattering from the metamaterial.

Radiation absorption was experimentally verified using a hyperbolic metamaterial consisting of arrays of 35 nm thick silver (Ag) nanowires (with dimensions 1 cm × 1 cm × 51 µm) grown in anodic alumina membranes using an electroplating technique. After filling with Ag and adding surface-roughness treatments, reflectance was significantly reduced to less than 1% at an 873 nm wavelength. While comparable to the darkest media available so far, such as carbon nanotubes or other traditional nonreflective coatings, the unique feature of the new metamaterial is its ability to not only sustain but even see improved performance if damaged in a real-life environment. Contact Mikhail A. Noginov at [email protected].

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!