Planar MZI is a mere 20 x 20 μm in size

May 1, 2010
Researchers at the Delft University of Technology and the Eindhoven University of Technology have used diffractionless collimated propagation in a planar photonic crystal to create a Mach-Zehnder interferometer (MZI) only 20 × 20 µm in size.

Researchers at the Delft University of Technology (Delft, the Netherlands) and the Eindhoven University of Technology (Eindhoven, the Netherlands) have used diffractionless collimated propagation in a planar photonic crystal to create a Mach-Zehnder interferometer (MZI) only 20 × 20 µm in size. For photonic crystals of a certain design, a beam of light can remain self-collimated, although only if it is propagating in certain directions; the mirrors and beamsplitter of the MZI must thus direct the beams only in these directions.

A prototype for operation at a self-collimation wavelength of 1510 nm was fabricated in a layer of silicon on a substrate of silica. The photonic crystal had a rectangular lattice of holes with a 105 nm radius and a 340 nm lattice constant; line defects serving as beamsplitters had holes with a 155 nm radius. The crystal showed a unidirectional output at 1510 nm; when the wavelength was detuned to 1620 nm, the self-collimation in both MZI arms was lost and the output dropped. The planar micro-optical device has potential as a compact modulator, as a micromechanical sensor, or in a lab-on-a-chip device. Contact Hoang Nguyen at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!