Combinatorial approach optimizes metamaterials

Oct. 1, 2010
The combinatorial discovery approach, in which many slight variations on a desired entity (such as a device or material) are fabricated and then individually characterized to see if they are adequate for the job, has been very successful at finding new drugs and other chemical compounds.

The combinatorial discovery approach, in which many slight variations on a desired entity (such as a device or material) are fabricated and then individually characterized to see if they are adequate for the job, has been very successful at finding new drugs and other chemical compounds. Now, researchers at the University of Southampton (Southampton, England), Sony (Tokyo, Japan), and National Taiwan University (Taipei, Taiwan) are using the same approach to discover better performing optical metamaterials. As a test, they applied the technique to metamaterials with so-called Fano resonances, which are very sensitive to small variations in geometry.

Many arrays of split-ring gold apertures (which serve as unit cells in many metamaterials) were fabricated, with unit-cell sizes ranging from 400 to 500 nm and other characteristics, such as gap-size and gap-position asymmetries, also serving as variables. The transmission and reflection of the arrays were measured in the 800 to 2000 nm spectral range. The researchers found that, in practice, a tradeoff between the narrowness of the resonances and the size of the asymmetries must be considered, and that trying to tune things too close to the theoretical optimum resulted in an overwhelming deleterious effect due to unavoidable imperfections. The resulting quantitative insights (versus merely qualitative for the conventional simulation approach) produced explicit recipes for better metamaterial design. Contact Eric Plum at[email protected].


More Laser Focus World Current Issue Articles


More Laser Focus World Archives Issue Articles

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!