Ultrafast laser creates photonic crystal in diamond

Feb. 1, 2009
A metamaterial consisting of periodic regions of high electrical conductivity in a 3 × 3 × 1.5 mm synthetic-diamond crystal has been fabricated by researchers at Kyoto University (Kyoto, Japan); the regions are created by focusing 230 fs pulses at 1 kHz from a modelocked Ti:sapphire laser to a beam-waist diameter of 2 µm and an energy fluence of 28.5 J/cm2 within the crystal.

A metamaterial consisting of periodic regions of high electrical conductivity in a 3 × 3 × 1.5 mm synthetic-diamond crystal has been fabricated by researchers at Kyoto University (Kyoto, Japan); the regions are created by focusing 230 fs pulses at 1 kHz from a modelocked Ti:sapphire laser to a beam-waist diameter of 2 µm and an energy fluence of 28.5 J/cm2 within the crystal. Testing the structure involved ablating the diamond surface to 23 µm deep with a focused-ion beam and then measuring with scanning-electron microscopy and micro-Raman spectroscopy.

Results showed that at a scanning speed of 20 µm/s, the ablated areas were transformed to a form of carbon that had an electrical conductivity of up to 64 S/m (this compares to crystalline graphite at about 104 S/m and amorphous carbon at about 10-2 S/m). The tests indicate that the change occurs due to a reduction of bond-angle disorder at sp2 aromatic rings, causing graphitization of the diamond structure. Scanning the laser spot at lower speeds caused recrystallization into diamond, with reduced conductivity. Potential uses of the metallo-dielectric photonic crystal include wire-grid polarizers and terahertz metamaterials. Contact Yasuhiko Shimotsuma at [email protected].

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!