Black silicon provides antireflection surface for efficient solar cells

Nov. 1, 2009
Black silicon—formed by the irradiation of silicon with an ultrafast laser in a sulfur-based atmosphere, or by various etching processes—is finding applications as varied as IR detection and terahertz emission.

Black silicon—formed by the irradiation of silicon with an ultrafast laser in a sulfur-based atmosphere, or by various etching processes—is finding applications as varied as IR detection and terahertz emission. Now, researchers at the National Renewable Energy Laboratory (NREL; Golden, CO) have discovered that a similar black-silicon layer made nanoporous by a nanocatalyzed etch can be used as an effective antireflection coating for silicon solar cells.

Although black-silicon (bSi) solar cells have been previously demonstrated with conversion efficiencies ranging from 8.8% to 13.9%, systematic analysis of the loss mechanisms was not performed. Researchers at NREL, by studying the reflectance and optical properties of bSi and optimizing the solar-cell fabrication process, developed bSi solar cells with efficiency values of 16.8%. Analysis of bSi solar cells fabricated with a nanoporous etch of different depths (and pore sizes, as well as levels of inhomogeneity) within the silicon substrate revealed that cell efficiency can be maximized by optimizing etch depth and pore size, and by increasing scattering from the backside metallization layer. A 500-nm-deep bSi surface from a three-minute etch allowed routine fabrication of 16.8% efficient solar cells without requiring any antireflection coating. Contact Hao-Chih Yuan at [email protected].

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!