ABSORPTION SPECTROSCOPY: Optical cavity opens door to better detectors

Dec. 1, 1999
Chemists have long used absorption spectroscopy to measure small amounts of a substance, and cavity ring-down spectroscopy (CRDS) has made the technique even more sensitive.

Chemists have long used absorption spectroscopy to measure small amounts of a substance, and cavity ring-down spectroscopy (CRDS) has made the technique even more sensitive. Using a pair of concave, highly reflective mirrors, researchers form an optical cavity that contains a gas sample. They inject a light pulse, usually from a laser, into the cavity and let it bounce between the mirrors until its intensity decays, or rings down. When gas in the cavity absorbs the light, the decay rate speeds up, so a measurement of the rate of ring-down shows how much of a given molecule is present.

The problem with traditional CRDS is that it does not work in a general way for other states of matter. Andrew C. R. Pipino of the Chemical Science and Technology Laboratory at the National Institute of Standards and Technology (Gaithersburg, MD) has devised a way to extend cavity ring-down spectroscopy to surfaces and condensed matter. He uses a small ring cavity made of fused silica in the shape of a regular polygon with a convex facet, which provides for total internal reflection of laser pulses injected with photon tunneling through a pair of coupling prisms. This makes for a long lifetime for the pulses. As the light reflects back and forth against the inner surfaces, evanescent waves project outside the cavity. If a sample molecule is on the surface and absorbs the evanescent wave, the ring-down time decreases.

There have been instances of applying CRDS to samples other than gas, Pipino said, but in those cases the cavities were specifically designed for a particular part of the spectrum. In contrast, total internal reflection creates a broadband mirror. His design could, in theory, be applied from the ultraviolet to the near-infrared, although he has only gone from 440 to 680 nm experimentally. "To go to the mid-infrared (mid-IR), we need new sources, new cavity material, and so forth," he said.

Fluoride glasses, for instance, might make suitable cavities to reflect wavelengths in the mid-IR, and the lasers must be tunable to be useful. There are a lot of strategies that have to be tested to expand the technique, Pipino said.

If they can extend the technique into the mid-IR, where vibrational spectroscopy gives more information, and optimize detection, researchers may eventually be able to detect a single molecule of a chemical species. "That's a very futuristic projection at this point," Pipino said.

Based on current abilities, he projects that he could detect a concentration of approximately 600 water molecules, and even that may turn out to be optimistic. Still, he said, single-molecule detection by absorption spectroscopy has been achieved, and with sufficient research the same might be possible for the ring-down method.

Absorption is an important method for understanding fundamental chemical interactions. The total-internal-reflection technique can measure not only the concentration but also the physical orientation of a chemical species on a surface by measuring the ratio of absorption of in-plane to out-of-plane polarizations. That measurement is significant information because chemical reactivity is affected by orientation.

Pipino said the technique may one day enable the building of detectors for sniffing out explosives or for finding traces of chemical and biological weapons. "Again, a lot has to be done to get to that point," he said. "Hopefully, we'll be able to go to the mid-infrared, but that is probably several years off."

About the Author

Neil Savage | Associate Editor

Neil Savage was an associate editor for Laser Focus World from 1998 through 2000.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!