Robust synthesis method improves dielectric-mirror design

March 1, 2011
Many significant breakthroughs in ultrafast-laser technology have been made possible by improvements in ultrafast laser optics, specifically in the development of thin-film dielectric coatings and processes.

Many significant breakthroughs in ultrafast-laser technology have been made possible by improvements in ultrafast laser optics, specifically in the development of thin-film dielectric coatings and processes. Despite these improvements, electron-beam evaporation, magnetron sputtering, and other fabrication techniques are still prone to deposition errors. In an effort to minimize those errors and improve dielectric-mirror design, researchers from Ludwig-Maximilians-Universität München (Munich, Germany), Ultrafast Innovations (Garching, Germany), and Moscow State University (Moscow, Russia) have developed a new robust synthesis method that can be used to design dispersive mirrors that are impossible to produce using conventional needle optimization techniques.

The robust synthesis method is essentially a generalization of very efficient needle optimization and gradual evolution techniques, and is based on a simultaneous optimization of spectral characteristics of multiple designs located in a small neighborhood of the main or pivotal design. Using the method and a conventional needle optimization technique, the research team fabricated dispersive mirrors operating from 690–890 nm with a dispersion of -300 fs2 at 800 nm. The mirror fabricated using the robust synthesis method had much lower sensitivity to deposition-layer thickness errors and exhibited much-less-pronounced resonance errors. Contact Vladimir Pervak at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!