Spectral encoding could allow confocal in vivo imaging of human tissue

Sept. 1, 1998
Gary J. Tearney and colleagues at Wellman Laboratories of Photomedicine, Massachusetts General Hospital (Boston, MA), have demonstrated a submicrometer-resolution scanning confocal microscope that could be miniaturized and incorporated into an endoscope. The researchers suggest that, with improvements, the spectrally encoded confocal microscope (SECM) could be implemented for in vivo diagnostic imaging of human internal tissue.

Spectral encoding could allow confocal in vivo imaging of human tissue

Gary J. Tearney and colleagues at Wellman Laboratories of Photomedicine, Massachusetts General Hospital (Boston, MA), have demonstrated a submicrometer-resolution scanning confocal microscope that could be miniaturized and incorporated into an endoscope. The researchers suggest that, with improvements, the spectrally encoded confocal microscope (SECM) could be implemented for in vivo diagnostic imaging of human internal tissue.

The instrument encodes sample remittance as a function of spatial location using a diffractive optical element to illuminate distinct spatial locations on the sample specimen with different wavelengths of light. The wavelength-division-multiplexed information is transmitted along a single-mode fiber and demultiplexed external to the probe by heterodyne Fourier-transform spectroscopy. The light source is a quasi-monochromatic diode producing 47 µW with a center wavelength at 940 nm and a bandwidth of 75 nm. Because this arrangement does not require fast spatial scanning within the probe, the instrument can be miniaturized. And, according to Tearney, decoding the feedback away from the probe may allow the SECM to provide frame rates compatible with in vivo imaging of human tissue, free of motion artifacts, with equipment compact enough to fit into a small-diameter catheter or endoscope.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!