Three-dimensional silicon photonic crystal operates at infrared wavelengths

Sept. 1, 1998
Researchers at Sandia National Laboratories (Albuquerque, NM) and Ames Laboratory at the University of Iowa (Ames, IA) have fabricated a three-dimensional (3-D) infrared photonic crystal on a silicon wafer. The crystal has a layer-by-layer structure consisting of parallel rods etched in silicon dioxide, rotated by 90° in successive layers with every other layer shifted by half of the separation between the rods. The result is a structure that repeats every four layers. Shawn-Yu Lin and James

Three-dimensional silicon photonic crystal operates at infrared wavelengths

Researchers at Sandia National Laboratories (Albuquerque, NM) and Ames Laboratory at the University of Iowa (Ames, IA) have fabricated a three-dimensional (3-D) infrared photonic crystal on a silicon wafer. The crystal has a layer-by-layer structure consisting of parallel rods etched in silicon dioxide, rotated by 90° in successive layers with every other layer shifted by half of the separation between the rods. The result is a structure that repeats every four layers. Shawn-Yu Lin and James G. Fleming of Sandia and their fellow scientists produced a crystal with a stop band from 10 to 14.5 µm, strong attenuation of light within this band--about 12 dB per unit cell--and a spectral response uniform to better than 1% over the 6-in. wafer.

Because of the large bandgap, such a crystal could be used as a bandpass filter integrated with a silicon waveguide or a photodetector. The attenuation constant allows the production of a high-quality resonant cavity, confining light to a fraction of a cubic wavelength. This could allow fabrication of single-mode light-emitting diodes. A 3-D photonic crystal could also modify or suppress the intrinsic thermal emission of a hot object, which might be useful in infrared emissivity engineering.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!