Gold diffused in silicon waveguide leads to NIR light amplification

Dec. 15, 2016
Researchers at Tel Aviv University are making silicon-on-insulator waveguides into optically pumped gain media by diffusing gold into them.

Silicon is an indirect-bandgap semiconductor and thus ordinarily does not allow for lasing or amplification of light without using hybrid materials. However, Stanislav Stepanov and Shlomo Ruschin of Tel Aviv University (Tel Aviv, Israel) are making silicon-on-insulator (SOI) waveguides into optically pumped gain media by diffusing gold into them. If further developed, this technology could enable practical on-chip waveguide-based silicon lasers and amplifiers for silicon photonic integrated circuits, as well as in separate components.

Using phosphorus-doped SOI wafers, the researchers thermally diffused gold into the wafer's top layer at room atmosphere and pressure, creating a range of prototypes using different diffusion temperatures from 550° to 700°C and different diffusion times from 30 minutes to 7 hours. After diffusion, the researchers patterned ridge large single-mode waveguides with 5 μm thickness, 10 μm width, and 2 cm length with a 0.5-μm-thick silicon dioxide buffer layer. The waveguides were transversely pumped from above with laser light at 532 nm, with the intent to create optical amplifiers for the near-infrared (NIR) range. The pump light was modulated by a chopper at frequencies ranging from 1 to 1000 Hz for experimentation. Two signal lasers were used: a tunable laser with a 1.527 to 1.576 μm wavelength range, and a single-wavelength 1.32 μm laser. An oscillogram of the test results using the longer-wavelength signal laser shows a gain of 6 to 7. At a 0.55 W pump power, the gain coefficient reached 30 dB/cm for the 1.55 μm signal, but only about 6 dB/cm for the 1.32 μm signal. The researchers next want to better understand the mechanisms for amplification and use that info to develop practical devices. Reference: S. Stepanov and S. Ruschin, arXiv:1611.03475v1 [physics.optics] (Nov. 6, 2016).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!