Electrostatic Rydberg-atom mirror reflects hydrogen

Sept. 1, 2006
Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror.

Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror. The device works with Rydberg atoms (in this case, hydrogen), which have at least one orbital electron excited to a very high quantum state, making the atoms easily influenced by external electric fields. The electrostatic mirror consists of four electrodes that create an electric field of about 2000 V/cm.

Distance from the excitation point (mm)
Click here to enlarge image

Hydrogen atoms in a supersonic flow were created by photolysis of ammonia with a 193 nm excimer laser. Counterpropagating UV and vacuum-UV laser beams then photoexcited the atoms to the n = 27 Stark state. Initially moving at 720 m/s, the Rydberg atoms were stopped by the mirror 1.9 mm away from the spot where they were photoexcited, and were reflected back to their original position in about 9.8 µs. The mirror also focused the atom cloud in one dimension. The atom cloud was imaged by suddenly ionizing the atoms with an electric-field pulse, making the cloud visible on a phosphor screen. Contact Edward Vliegen at [email protected].

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!