Electrostatic Rydberg-atom mirror reflects hydrogen

Sept. 1, 2006
Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror.

Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror. The device works with Rydberg atoms (in this case, hydrogen), which have at least one orbital electron excited to a very high quantum state, making the atoms easily influenced by external electric fields. The electrostatic mirror consists of four electrodes that create an electric field of about 2000 V/cm.

Distance from the excitation point (mm)

Click here to enlarge image

Hydrogen atoms in a supersonic flow were created by photolysis of ammonia with a 193 nm excimer laser. Counterpropagating UV and vacuum-UV laser beams then photoexcited the atoms to the n = 27 Stark state. Initially moving at 720 m/s, the Rydberg atoms were stopped by the mirror 1.9 mm away from the spot where they were photoexcited, and were reflected back to their original position in about 9.8 µs. The mirror also focused the atom cloud in one dimension. The atom cloud was imaged by suddenly ionizing the atoms with an electric-field pulse, making the cloud visible on a phosphor screen. Contact Edward Vliegen at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!