Metalens controls light within the extreme ultraviolet realm

May 9, 2023
Researchers create the first transmissive optics technology within the extreme ultraviolet (EUV) realm to provide clean foci and images—enabling exploration of attosecond physics at play during fundamental physical processes.

A team of researchers from Harvard University (Cambridge, MA) and Graz University of Technology (Austria) recently created the first metalens to focus beams of extreme ultraviolet (EUV). This feat opens the door to exploring microelectronics and fundamental physical processes at an attosecond level (see video).

Marcus Ossiander, a postdoctoral fellow in Federico Capasso’s group at Harvard and now working at Graz University of Technology, has a Ph.D. in attosecond physics, which requires EUV to create the shortest light pulses to observe the evolution of physical processes such as the photoelectric effect. He and colleagues struggled with a severe lack of optics for attosecond physics, because it disrupted projects or made them downright impossible.

“After I learned how to design metalenses, I had this dream a metalens might solve our problems in attosecond physics—and, it turns out, it can,” says Ossiander, who is now switching back to attosecond physics to harness these new tools.

Building an EUV metalens

The basic design behind this work goes all the way back to the Huygens principle: treat each hole within the membrane as a tiny emitter of light. “We design the phases of these emitters so light constructively interferes in a single spot at the focal length (10 millimeters) we want to achieve,” explains Ossiander. “And we can create the design of the lens we need to manufacture hole by hole, and then fabricate the design using electron-beam lithography.”  
The team is using metaoptics developed by Capasso’s group at Harvard to build their metalens. The entire lens consists of an approximately 200 nm thin-film membrane etched with hundreds of millions of tiny holes—about 10 holes per micrometer (see Fig. 1). These holes range from 20 to 80 nm in diameter, and their diameters vary and decrease from the center of the membrane outward. Depending on the size of the hole, incident light radiation is delayed and collapses into a tiny focal point (see Fig. 2).  

Proof of functionality was done at Graz University of Technology’s Institute of Experimental Physics with Martin Schultze’s group, which specializes in ultrashort UV light flashes. For this project, they created a light source to generate radiation to match the wavelength of the metaoptics.

Vacuum-guided EUV light

The group experienced a few “a-ha!” moments along the way, and one was “realizing we can use holes (a vacuum) in a membrane to guide EUV light with a wavelength of ~50 nm, just as people have guided visible light within silica fibers for decades,” Ossiander says. “And putting the finalized lens to the test and seeing it focus light for the first time was extremely rewarding—and also a relief after all of the work we put into it.”

One of the biggest challenges for the group was developing nanofabrication recipes. “It was difficult and took years to do, because we had to shrink the features in our lens by a factor of 5 compared to ones ‘normal’ metalenses use,” says Ossiander. “Maryna Meretska, a postdoctoral researcher in Capasso’s group at Harvard, worked hard to create our device. With the recipes we’ve developed, we can now make new optics much faster. The next challenge will be to shrink features even more to make optics for ever-shorter wavelengths.”

It’s important to note this is the only transmissive optics technology within the EUV regime that creates clean foci and images. “So far, EUV optics with large numerical apertures are either unavailable or huge, so they cost hundreds of thousands of dollars,” Ossiander points out. “Our technology allows us to shrink these optics and makes it much easier to fabricate them, which may help bring EUV microscopes into laboratories.”

Closing in on the diffraction limit

The team is now exploring how close they can get to the diffraction limit and whether it’s possible to improve the efficiency of the lenses by tweaking their designs.

“This is the first universal optics technology for EUV, so now we can start making optics like holograms,” says Ossiander. “And since these lenses enable focusing short (femtosecond to attosecond) bursts of light into tiny spots, it makes them ideal to build a microscope to better explore and understand the next generation of nanophotonics devices, such as integrated optoelectronics and plasmonic devices for energy harvesting.”

While this work may appear to be fundamental research, EUV is already being used today to create microchips for smartphones and computers—and the team now hopes the technology will help push not only the limits of fundamental research, but also reach beyond to semiconductor manufacturing.


M. Ossiander et al., Science (Apr. 6, 2023); doi:10.1126/science.adg6881.

About the Author

Sally Cole Johnson | Senior Technical Editor

Sally Cole Johnson has worked as a writer for over 20 years, covering physics, semiconductors, electronics, artificial intelligence, the Internet of Things (IoT), optics, photonics, high-performance computing, IT networking and security, neuroscience, and military embedded systems. She served as an associate editor for Laser Focus World in the early 2000s, and rejoined the editorial team as senior technical editor in January 2022.

Sponsored Recommendations

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Catalog of Filters and Filter Sets

Nov. 27, 2023
This price list provides information about the filter sets Chroma Technology has created for the multitude of fluorochromes that are typically used in epi-fluorescence microscopy...

Handbook of Optical Filters for Fluorescence Microscopy

Nov. 27, 2023
Fluorescence microscopy requires optical filters that have demanding spectral and physical characteristics. These performance requirements can vary greatly depending on the specific...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!