Organic crystals show promise for more efficient photon upconversion

Dec. 2, 2021
Solid-solution organic crystals could lead to less light waste, ultimately enhancing technologies such as solar cells.

In many applications, lower energy, long-wavelength light is wasted. This makes devices such as solar cells less efficient, as they can’t fully benefit from both the high and low energy photons that sunlight produces. Now, via a solid material, researchers in Tokyo have discovered a way to save those longer wavelengths and make them useful.

According to a team at the Tokyo Institute of Technology (Tokyo Tech), specifically, as individual photons’ energy is inversely proportional to its wavelength “and chemical and physical processes are triggered by light only when the energy provided by individual photons exceeds a certain threshold,” not all wavelengths of light can be utilized. For years, scientists pursuing more-efficient solar cells have sought solid materials that can achieve photon upconversion (PUC), which involves photons with lower energies and thus longer wavelengths being captured and re-emitted as those with higher energies and shorter wavelengths. As opposed to existing methods that involve liquid samples, which can be “inherently risky and cumbersome in many applications” despite touting high PUC efficiency, solid crystal materials have always been deemed more promising. However, challenges including poor crystal quality have led to “short travelling distances of triplet excited states and thus low PUC efficiency.”

In their recent study—published in Materials Horizons—the Tokyo Tech researchers demonstrated that van der Waals solid-solution organic crystals can essentially transform long-wavelength light that is typically wasted into shorter wavelength light, “yielding triplet-sensitized [PUC] organic crystals with extraordinary performance.” At a solar excitation intensity of only 0.175 sun, the crystals achieved a high upconversion quantum yield of 16% out of a theoretical 50%.

“[This is] a major technical leap forward in the quest for high-performance PUC solids, which will open up diverse photonics technologies in the future,” says Yoichi Murakami, an associate professor at Tokyo Tech and co-author of the study. He notes that the findings could boost and enhance existing technologies, such as solar cells, as well as photocatalysts for hydrogen and hydrocarbon productions.

About the Author

Justine Murphy | Senior Editor

Justine Murphy is a multiple award-winning writer and editor with more 20 years of experience in newspaper publishing as well as public relations, marketing, and communications. For nearly 10 years, she has covered all facets of the optics and photonics industry as an editor, writer, web news anchor, and podcast host for an internationally reaching magazine publishing company. Her work has earned accolades from the New England Press Association as well as the SIIA/Jesse H. Neal Awards. She received a B.A. from the Massachusetts College of Liberal Arts.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!