When light reflects from a multilayer dielectric, how deep does it go?

April 21, 2021
Confirmed by experiment, calculations show how deep light goes into a DBR mirror before it reflects; this is relevant for determining microcavity lengths.

At what depth is a multilayer reflective coating actually reflecting the incident light (shown are some dielectric mirrors from Laser Components)? Martin van Exter and Corné Koks of Leiden University (Leiden, Netherlands) have done some calculations to try to more precisely pin this down, as they say that some other recent studies have not correctly modeled the penetration depth and have used incorrect equations. “To tell you the truth, many researchers have been a bit sloppy,” says van Exter. “We have dotted some Is and crossed some Ts.” A multilayer coating serves as a distributed Bragg reflector (DBR), with layers of alternating low and high refractive indices; the two researchers not only did an analysis that involves three different penetration depths (and analyses of DBRs starting with either a low- or high-index layer, called L-DBRs and H-DBRs, respectively), but they also tested their analysis experimentally on microcavities. The conclusion is that there are three different penetration depths, depending on what exactly one would like to measure.

A standing wave of light within a cavity has nodes (where the amplitude is zero) and antinodes (where the amplitude is maximal). The point in the mirror where the node is located was dubbed the phase-penetration depth by van Exter and Koks. For light of one wavelength, the penetration depth is not very deeptypically almost on the surface of the mirror. But a pulse, especially an ultrafast pulse, has a range of frequencies. “When you calculate how fast this pulse returns, and therefore from what depth, the penetration depth turns out to be larger,” says van Exter. “This, we call the frequency-penetration depth.” In addition, the physicists define a third modal-penetration depth, applicable for sharply focused beams of light.

“These are not revolutionary changes,” says van Exter, “but we do show this for the first time, and we note that physicists are often sloppy when calculating their optical setups.” The differences are important for optical microcavities that are only a few microns deep, as the reflection depth helps determine the actual cavity length. Sample experimental measurements made by the researchers include a frequency-penetration depth of 0.28 μm and modal-penetration depth of 0.06 μm, which agreed with their theory. Reference: C. Koks and M. P. van Exter, Opt. Express (2021); https://doi.org/10.1364/oe.412346.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Monolithic integration of functional structures into micro-optical elements

Dec. 6, 2023
A polymer-only ultraviolet imprint process potentially saves costs, simplifies the process, and increases the reliability of the optical element.

Manufacturing thin films with tailor-made electronic properties

Dec. 5, 2023
Unlock the future of optoelectronics as researchers at Leibniz IPHT in Jena, Germany unveil an innovative technique for precision deposition of thin organic semiconductor films...

Quantitative Microscopy with Deep Learning

Dec. 5, 2023
Explore the untapped potential of deep learning in video microscopy with our cutting-edge software, DeepTrack 2.2. Overcoming the steep learning curve, this innovative application...

Stimulated Brillouin scattering enhances CMOS chip for microwave signal processing

Dec. 5, 2023
University of Sydney Nano Institute researchers are pioneering photonic silicon chips and helping spur growth in Australia’s semiconductor industry.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!