Metasurface lenses infiltrated with liquid crystal are reconfigurable

Aug. 21, 2020
Metalenses with LC-infused quartz nanopillar regions have the potential to be electrically focused and otherwise reconfigured.

In the last decade or so, a group led by scientist Federico Capasso at Harvard University's John A. Paulson School of Engineering and Applied Sciences (SEAS; Cambridge, MA) has begun to transform the field of optics by engineering flat optical metasurfaces that use an array of millions of microscopically thin and transparent fused-silica pillars to control phase, amplitude, and/or polarization of light.

The technology was selected as among the Top 10 Emerging Technologies by the World Economic Forum (WEF) in 2019, which remarked that such lenses would soon begin to be seen in smartphone cameras, sensors, fiber-optic components, and medical-imaging devices such as endoscopes.

Now, Case Western Reserve University (Cleveland, OH) physics professor Giuseppe Strangi and collaborators at Harvard have taken a step toward making these metasurface lenses even more useful, by making them reconfigurable.1 They did this by harnessing nanoscale forces to infiltrate liquid crystals between the fused-silica pillars.

They infiltrated three different sorts of liquid crystals of different refractive index and birefringence, then evaluated the metalens performance; the experimental results agree qualitatively with finite-difference time-domain solver (FDTD) simulation results. By electrically controlling the liquid crystal, the researchers will enable this new class of metalenses to reconfigure and structure light.

Commercial interest already

“This is just the first step, but there are many possibilities for using these lenses, and we have already been contacted by companies interested in this technology,” says Strangi.

Strangi collaborated with several other researchers in the United States and Europe, including fellow Case Western Reserve researchers Andrew Lininger and Jonathan Boyd; Giovanna Palermo of Universita’ della Calabria in Italy; and Capasso, Alexander  Zhu and Joon-Suh Park of the John A. Paulson School of Engineering and Applied Sciences at Harvard University.

Capasso, who pioneered the metasurface optics research field and in 2014 first published research on metalenses, credited Strangi for the idea to infiltrate the metalenses with liquid crystals and says this innovation represents a step toward more-significant advances.

“Our ability to reproducibly infiltrate, with liquid crystals, state-of-the art metalenses made of over 150 million nanoscale diameter glass pillars and to significantly change their focusing properties is a portent of the exciting science and technology I expect to come out of reconfigurable flat optics in the future,” Capasso notes.

Source: https://thedaily.case.edu/a-new-lens-on-the-world/

REFERENCE:

1. Andrew Lininger et al., Proceedings of the National Academy of Sciences (2020); https://doi.org/10.1073/pnas.2006336117

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!