High-quality copper oxide microcrystals are synthesized for quantum photonics

June 16, 2020
A fabrication process for cuprous oxide, a material useful for quantum optical systems, is compatible with standard silicon fabrication techniques—and thus useful for photonic integration.

Cuprous oxide (Cu2O) is a promising material for quantum photonics and optoelectronics, due to its ability to simulate highly excited Rydberg atomic states via the formation of solid-state excitons within the material; such excitations can be interfaced with photonic integrated circuits for on-chip generation and manipulation of light at the single-photon level. Now, a team of researchers from KTH Royal Institute of Technology (Stockholm, Sweden), Graz University of Technology (Graz, Austria), and CNRS, École Polytechnique (Palaiseau, France) has found a way to synthesize high-quality Cu2O microcrystals.

Making the crystals involves heating a copper thin film to high temperatures in vacuum conditions. In the study, the researchers took this method and identified the growth parameters needed to fabricate Cu2O microcrystals with excellent optical material quality and low levels of point defects and impurities. The process is compatible with standard silicon fabrication techniques and allows the possibility for photonic circuit integration. In a photoluminescence experiment, emission peaks corresponding to Rydberg excitons up to n = 6 were seen in the fabricated microcrystals.

“The majority of quantum optics experiments with this material have been performed with geological samples found in minesfor instance, the Tsumeb mine in Namibia,” says Stephan Steinhauer, a researcher at KTH. “Our synthesis method is associated with very low-cost fabrication, suitable for mass production, and does not require gases or chemicals that are toxic or harmful for the environment.” He notes that the properties of Cu2O can lead to new schemes for quantum information processing with light in the solid state, which are difficult to realize with other materials. Reference: S. Steinhauer et al., Commun. Mater. (2020); https://doi.org/10.1038/s43246-020-0013-6.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!