Shaped glass diffusers for medical use handle high laser powers

April 14, 2020
Designed for phototherapy using laser light, a series of diffusers made from a “glasslike material” homogenize high-power light and come in flat, cylindrical, spherical, and other shapes.

Phototherapy has come into its own as a tool for treating medical conditions, including treating cancers, psoriasis, enlarged leg veins, and so on. Localized light-based treatments that require high intensities benefit from laser light delivered through optical fiber. The remaining problem is how to deliver the light to the area being treated in a precise distributed manner while maintaining high efficiency and durability for clinical use. For this purpose, engineers at Schott (Mainz, Germany) have developed diffusers made of what Schott calls “glasslike materials” that produce a homogenous light output at high laser powers and can transmit visible, infrared, and ultraviolet wavelengths with high efficiency; the materials incorporate scattering elements to deliver up to 20 W of laser light with high efficiency (low absorption). The ability to handle high powers is critical because plastic components melt or could cause tissue burns if they overheat.

Mounted on optical-fiber ends, the diffusers are biocompatible and physically durable, although they are designed for single-use instruments that are discarded after use (as opposed to repeated-use instruments that are sterilized for reuse). Diffuser geometries include flat, cylindrical, and spherical, as well as custom; the cylindrical diffusers are typically 5 to 50 mm in length, diameters down to 100 μm, and an optical output of up to 500 mW/cm2, while the spherical diffusers typically range from 0.3 to 1 mm in diameter and support optical powers of up to 20 W. The diffusers work at wavelengths ranging from the near-UV into the near-IR (NIR) at up to wavelengths of 2 μm. “Our next anticipated R&D steps are further improving transmission in the NIR/IR spectrum, as well as realizing challenging emission patterns,” says Juergen Hammerschmidt, head of new business development at Schott Lighting and Imaging. Contact Haike Frank at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!