Laser-driven microbubble implosion is new way to create a tabletop particle accelerator

May 24, 2018
Simulations show that ultrafast laser pulses could create imploding bubbles in matter, producing relativistic protons.

Scientists at Osaka University (Osaka, Japan) have discovered a novel particle acceleration mechanism called microbubble implosion, in which extremely high-energy hydrogen ions (in other words, protons traveling at relativistic speeds) are emitted at the moment when ultrafast-laser-produced microbubbles in hydrides (hydrogen-contaning materials) shrink to atomic size.1

Led by Masakatsu Murakami, the group has reported an astonishing (simulated) physical phenomenon: when matter is compressed via the microbubble effect, creating densities comparable to matter the size of a sugar cube weighing more than 100 kg (a compression ratio higher than that for current inertial-confinement fusion experiments), high-energy protons are emitted from positively charged nanoscale clusters. Conventionally, an acceleration distance of several tens to hundreds of meters is necessary for conventional accelerators to generate such high proton energies.

In microbubble implosion, a phenomenon in which ions converge to a single point in space at half the speed of light plays a crucial role. This phenomenon, which looks like the opposite of the Big Bang, is essentially different from any previously discovered or proposed acceleration principles, including other laser tabletop acceleration techniques.

Attosecond time scale

A high-energy femtosecond laser (such as a petawatt laser) is used, with the focused beam producing a peak intensity of 1020 to 1022 W cm−2. The resulting "proton flash" occurs over a time interval of only on the order of 500 attoseconds and within a very small volume of a few cubic nanometers.

This new technique could produce physics and astronomy results toofor example, clarifying unknown space physics at large scales of time and space, such as the origins of high-energy protons (a type of cosmic ray). In addition, as a compact source of neutron radiation through nuclear fusion, this concept could be used in a variety of applications in medical treatment and industry in the future, such as proton radiotherapy to treat cancer and proton-driven inertial-confinement fusion.

Source: https://www.eurekalert.org/multimedia/pub/171111.php

REFERENCE:
1. M. Murakami, A. Arefiev, and M. A. Zosa, Nature Scientific Reports (2018); doi:10.1038/s41598-018-25594-3.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!