Inorganic thin-film PV substrate and encapsulation market to reach $1.3 billion by 2015

Oct. 18, 2010
A new report says that, while glass will continue to dominate substrate and encapsulation materials used for inorganic thin-film photovoltaics (TFPVs), new materials such as metal foils, plastics, ceramics, and composites will grow rapidly in importance.

Glen Allen, VA--A report from industry-analyst firm NanoMarkets says that, while glass will continue to dominate substrate and encapsulation materials used for inorganic thin-film photovoltaics (TFPVs), new materials such as metal foils, plastics, ceramics, and composites will grow rapidly in importance. This is a result of the push to manufacture newer flexible PV materials using roll-to-roll processes, resulting in "intrinsically flexible products." The report covers TFPV materials such as thin-film silicon, cadmium telluride, and copper indium gallium (di)selenide (CIGS).

The TFPV substrate/encapsulation market is expected to reach $1.3 billion by 2015 and $1.8 billion by 2017. While some of the most-advanced encapsulation systems have proven difficult to develop and come with a high cost, there are some thin-film PV materials where these systems are beginning to make economic sense, most notably CIGS.

The report says that, despite their decline in overall market share, glassmakers can still expect opportunities to emerge for them. Thus, new flexible glasses can be used in the growing portion of the TFPV market that uses roll-to-roll processes. In addition, the report suggests that glass will continue to dominate for the highest-performing, "utility-grade" TFPV panels for both encapsulation and substrate purposes.

That said, NanoMarkets believes that the TFPV market is seeking new materials, such as low-cost thermally resistant plastics, and lower-cost dyadic (dual-material) encapsulation systems. It claims that these new materials ultimately have opportunities that go well beyond the PV space--for example in flexible displays and flexible lighting.

For more info, see www.nanomarkets.net.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!