Capasso lab demonstrates highly unidirectional "whispering gallery" microlasers

Dec. 15, 2010
Cambridge, MA--Researchers at Harvard University have demonstrated, for the first time, highly collimated unidirectional microlasers. The prototype devices are quantum cascade lasers emitting an optical power of 5 mW at a wavelength of 10 microns.

Cambridge, MA--Researchers at Harvard University have demonstrated, for the first time, highly collimated unidirectional microlasers. The prototype devices are quantum cascade lasers emitting an optical power of 5 mW at a wavelength of 10 microns.

The result of a collaboration with researchers from Hamamatsu Photonics in Hamamatsu City, Japan, and the Institute of Theoretical Physics of the University of Magdeburg, Germany, the advance has a wide range of new applications in photonics such as sensing and communications, according to the researchers.

Published online this week in the Proceedings of the National Academy of Sciences, the research team took advantage of a century-old phenomenon discovered in St. Paul's Cathedral, London--a concept in physics referred to as "whispering gallery modes."

Over a century ago, British scientist Lord Rayleigh wondered how two people standing on opposite sides of the dome in St. Paul's Cathedral could hear each other by whispering into the circular wall. He discovered that the sound skirts along the smooth surface of the wall with negligible attenuation due to scattering or absorption.

The optical analog of whispers in a dome are light rays confined to the perimeter of tiny circular disks by multiple reflections from the boundary as they circle around. Because attenuation is minimal within the smooth disk, these resonators have already been used to make some of the world's lowest-threshold lasers. Circular disks, however, have posed certain challenges.

"One of the crucial unsolved problems of these microlasers for practical applications has been that their emission is non-directional and their optical power output is negligible," according to team leader Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at Harvard's School of Engineering and Applied Sciences (SEAS).

"Light gets trapped by these whispering gallery modes with little chance to escape except by a faint isotropic emission. Strategies to suitably deform the disks to solve this problem have yielded disappointing results," Capasso added.

By shaping the microlaser as an ellipse with a wavelength-size notch carved out from its edge, Capasso's team found that the cycling whispering gallery modes scatter efficiently off the notch and emerge as nearly parallel beams from the microlaser.

The prototypes are quantum cascade lasers emitting an optical power of 5 milliwatts at a wavelength of 10 microns. The microlaser performance is insensitive to the details of the notch, making this device design very robust.

"Our calculations show that the notched elliptical microlaser should have even better performance at the shorter wavelengths near 1 micron, typical of laser diodes used in optical communications, where the attenuation of whispering gallery modes is negligible," said coauthor Jan Wiersig of the Institute of Theoretical Physics of the University of Magdeburg.

"The successful realization of these simple-structured and robust microlasers through standard wafer-based fabrication makes small-volume directional light sources possible for many important applications such as photonic integrated circuits with high-density chip-scale integration, optical communications, medical/biological sensors, and lab-on-a-chip," said coauthor Masamichi Yamanishi, Research Fellow of Central Research Laboratories at Hamamatsu.

The team's other authors are postdoc Nanfang Yu, research associates Laurent Diehl and Christian Pflügl, all at SEAS; Qi Jie Wang and Changling Yan, formerly postdocs at SEAS and now with the Technological University in Singapore, and the Changchun University of Science and Technology in Changchun, China, respectively; graduate student Julia Unterhinninghofenof the Institute of Theoretical Physics at the University of Magdeburg; and researchers Tadataka Edamura and Hirofumi Kan of Hamamatsu Photonics.

The research was partially supported by the Air Force Office of Scientific Research. The Harvard authors also acknowledge the support of two Harvard-based centers, the National Science Foundation Nanoscale Science and Engineering Center (NSEC) and the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN).

Source: Harvard School of Engineering and Applied Sciences

About the Author

Stephen G. Anderson | Director, Industry Development - SPIE

 Stephen Anderson is a photonics industry expert with an international background and has been actively involved with lasers and photonics for more than 30 years. As Director, Industry Development at SPIE – The international society for optics and photonics – he is responsible for tracking the photonics industry markets and technology to help define long-term strategy, while also facilitating development of SPIE’s industry activities. Before joining SPIE, Anderson was Associate Publisher and Editor in Chief of Laser Focus World and chaired the Lasers & Photonics Marketplace Seminar. Anderson also co-founded the BioOptics World brand. Anderson holds a chemistry degree from the University of York and an Executive MBA from Golden Gate University.    

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!