OSRAM unveils direct-emission green laser diodes emitting at wavelengths from 510 to 530 nm

May 13, 2019
The 30 and 50 mW laser diodes have the correct visual green color for projectors and light shows.

Indium gallium nitride (InGaN)-based laser diodes are straightforward to fabricate in blue-emitting versions, but are more difficult to make so that they emit in greenespecially the longer-wavelength green that humans perceive as true green: early green laser diodes have typically had a slight cyan cast. OSRAM Opto Semiconductors (Regensburg, Germany), which was a commercial pioneer in the introduction of green-emitting InGaN laser diodes, has been pushing the long-wavelength boundary and has now introduced InGaN-based direct emission green laser diodes with wavelengths from 510 to 530 nm for picoprojection and other red-green-blue (RGB) or green laser applications. (OSRAM also make blue laser diodes.)

The 510 to 530 nm range encompasses "true green."

Mounted in a TO38icut or TO56 package (these are quite small, with flange diameter of 3.8 mm) with integrated photodiode, these lasers have a typical divergence angle of 7° parallel and 22° perpendicular, small enough for circularization and collimation with relatively simple optics. This is an important property for micro-electro-mechanical systems (MEMS)-based projectors in which the color components per pixel result from the emission time of the laser diode, says OSRAM.

Existing small green-laser competition comes mainly in the form of frequency-doubled diode-pumped solid-state (DPSS) lasers of the form commonly found in the first green laser pointers. These lasers are relatively complicated, containing an infrared pump laser diode to pump the solid-state laser, and a nonlinear optical crystal to frequency double the resulting IR light into the green. In comparison, a direct-emission laser diode contains onlywell, a direct-emission laser diode.

Two of OSRAM's green laser-diode models, PL 520B & PL 520, have slightly different wavelength ranges at power levels of 30 mW or 50 mW at 25°C. The single-mode PL 520 laser diode has an output wavelength of 515 to 530 nm, an optical output is 50 mW and an efficiency typically of 5% to 6% at present, says OSRAM. The lasers have an operating temperature range of up to 85° C without active cooling.

Direct-emission green laser diodes can help enable practical high-power embedded projectors and could lead to the end of frequency-doubled DPSS lasers in small projectors. The lasers are also useful for laser light shows, as their high beam quality enables extremely fine structures to be displayed at a considerable distance, says OSRAM. The projectors also benefit from the high thermal stability and small size of the laser diodes. When used in point- or line-projecting lasers used, for example, in distance meters by builders, farther distances are possible because green light is far more visible than red at the same optical power.

Source: OSRAM Opto Semiconductors

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!