SemiNex launches laser-engine production line

April 2, 2019
Indium phosphide laser diode maker SemiNex's new assembly line is turning out laser engines for medical aesthetics.

As of March 2019, SemiNex Corporation has begun manufacturing their laser engines on a newly implemented assembly line at the company's headquarters in Peabody, Massachusetts. Over the past couple years, SemiNex engineers have optimized trial production processes to lower cost, improve performance, and increase capacity. Now, with production in full swing, SemiNex will continue to monitor and improve key performance metrics such as cycle time, on-time delivery, yield, and throughput. These steps will be crucial to successfully transferring the process over to contract manufacturinga technique that SemiNex says it typically uses to stay lean.

"The new production line uses custom fixtures to automate critical steps and requires minimal input from a technician," says mechanical engineer and project lead, Matt Hamerstrom. "We've reduced assembly time tenfold from the old design, and we were able to halve the cost while maintaining optimal performance."

Lasers for aesthetic use

While there has been considerable interest in home aesthetic laser treatments, few companies have been able to produce laser devices at a price and safety standard appealing to consumers. Every component of SemiNex's new production line, from the custom fixtures to the software on the final test station, has been engineered to meet these requirements for the consumer beauty market.

"It's been invaluable to have the insider knowledge and experience SemiNex brings to the production process," says Kayla Govoni, spokesperson for NIRA, a manufacturer of handheld home skincare laser devices. "We're expecting 2019 to be the year we really start seeing lasers for aesthetic use inside people's homes."

Seminex produces indium phosphide (InP)-based single-emitter, bar, bare-chip, and stack laser diode units, as well as modules, laser engines, and fiber-coupled units in the 1270 to 1940 nm wavelength region. In addition to aesthetic medical treatment, these lasers can be used for eye-safe military equipment and free-space optical communications.

Source: Seminex

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Manufacturing thin films with tailor-made electronic properties

Dec. 5, 2023
Unlock the future of optoelectronics as researchers at Leibniz IPHT in Jena, Germany unveil an innovative technique for precision deposition of thin organic semiconductor films...

Quantitative Microscopy with Deep Learning

Dec. 5, 2023
Explore the untapped potential of deep learning in video microscopy with our cutting-edge software, DeepTrack 2.2. Overcoming the steep learning curve, this innovative application...

Stimulated Brillouin scattering enhances CMOS chip for microwave signal processing

Dec. 5, 2023
University of Sydney Nano Institute researchers are pioneering photonic silicon chips and helping spur growth in Australia’s semiconductor industry.

Current Trends in Laser Absorption Spectroscopy: More than Just Beer's Law

Dec. 5, 2023
Dive into the cutting-edge world of absorption spectroscopy in our upcoming webinar, exploring groundbreaking techniques such as cavity ringdown spectroscopy, photoacoustic spectroscopy...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!